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The primary electroviscous effect in a suspension of rods 

By J. D. SHERWOOD 
Unilever Research, Port Sunlight Laboratory, Quarry R o d  East, 

Bebington, Wirral, Merseyside 

(Received 6 December 1980) 

Calculations of the primary electroviscous effect have previously been restricted to 
spherical particles. Here we examine a suspension of randomly orientated rod-shaped 
particles of length 1. Two competing mechanisms are present in a linear velocity field. 
The flow relative to each rod is largest at  the rod ends. When 1 is large the consequent 
large distortion of the charge cloud increases the electroviscous effect. On the other 
hand, the given total charge on a uniformly charged rod is spread more thinly as 1 
increases, and this tends to reduce the electroviscous effect. The balance of these two 
mechanisms is examined. 

1. Introduction 
Previous work on the primary electroviscous effect has concentrated on suspensions 

of uniformly charged spheres: see Booth (1950), Russel (1978), Lever (1979) and 
Sherwood (1980). Here we consider a suspension of rod-shaped particles of length 2 
and radius a, where 1 is sufficiently small that the flow around each particle is governed 
by the Stokes equation. The motivation for this work is an experimental study of 
suspensions of the peptide polyglutamic acid by Domard (1976). Electroviscous effects 
were clearly important in his experiments and in certain cases we shall be able to 
explain his results. 

Polyglutamic acid consists of a series of monomers each of which contains an 
ionizable group which either is, or is not, ionized. The molecule is therefore covered 
by a series of discrete charges rather than a continuous distribution of charge. In  this 
paper both the non-spherical geometry and the non-uniform charge distribution will 
be examined. In  $2 we shall consider a simple model of a polymer molecule with 
discrete charges placed along its length. The effect of the non-uniform charge dis- 
tribution will be seen, as will that of the non-spherical geometry. In  $ 3  we obtain 
asymptotic results for very long, uniformly charged ro& by neglecting end effects. 
The polymers studied by Domard were not sufficiently long for this asymptotic theory 
to be valid. In  $ 4  and $ 5  we therefore discuss a numerical study of a model which 
includes end effects. The theoretical predictions of this model are compared with 
Domard’s experimental results. 

The equilibrium charge cloud 

We shall use as far as possible the notation of a previous paper (Sherwood 1980, 
henceforth denoted by I), and we recall some of the results obtained there. The charged 
polymer (or ‘polyelectrolyte ’) is suspended in an electrolyte containing several species 
of ion, each with number density n m  and valence P, and with mobility w (assumed 
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the same for all species - a reasonable assumption for ions of similar size). The total 
charge density p is 

p = xnmzme, 

where e is the electronic charge. The electric potential $ is given by Poisson’s equation: 

m 

v=$ = -p/s. 

Far from any charged particle the number densities of the ions attain limiting values 
nz, where x nz zme = 0 

m 

for electrical neutrality of the solution. 
When the fluid velocity u = 0 the charge cloud is in thermal equilibrium. Denoting 

equilibrium quantities by the subscript 0, the number density nr of the mth species 
of ion will be given by the Boltzmann distribution: 

nr = ng exp ( - ezm$,/kT). 

Inserting this into Poisson’s equation gives the Poisson-Boltzmann equation : 

V2$, = - ( e / e )  zmnz exp ( - ezm$,/kT). 
m 

When edo 4 kT this may be linearized to give 

where 
V2$, = K2$0, 

ea 
ekT 

K Z  = - I; (zm)2nz. 

The Debye length K-1 is a typical size of the charge cloud. This linearized equation 
may be solved to give the potential around an infinite cylinder of radius a which 
carries a surface charge Q per unit length: 

where $o is the potential at  the surface T = a, and KO, K ,  are modified Bessel functions. 
We may most easily study the non-linear Poisson-Boltzmann equation if we 

restrict ourselves to an electrolyte containing one species of positive monovalent ions 
and one of monovalent negative ions. Non-dimensionalizing the radial distance r from 
the origin by a, and setting p = eq50/kT, the equation becomes 

where p+O as r+m and the boundary condition a t  the surface of the cylinder is 
either p = e$o/kT or p’ = - Qe/ZnuekT. This must be solved numerically. Far from 
the rod the potential is small and solutions take the form 

p - Q*Ko(aKr)/aKKl(aK) 
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FIGURE 1. The coefficient of K , ( u K ~ - ) / ~ K K , ( ~ K )  in the far field of the equilibrium cylindrical 

charge cloud around a rod of line charge density &. 

for some Q*. When the line charge density Q is small the linearized solution is valid 
everywhere and 

Q* = Qe12nekT. 

Numerical solutions of the Poisson-Boltzmann equation predict the far field 
behaviour shown in figure 1. At large charge densities Q* approaches a limit Q;~,(uK) 
and the far field saturates. When a K  B 1 the charge cloud is thin and curvature may 
be neglected. From the analytic solution for a plane double layer we obtain 

QB, N 4 a ~  as a K - t o O ,  

while Manning (1969) shows that 

&irm(O) = (2n>-l* 

This corresponds to a line of isolated charges e separated by 7.1 x 10-lO m in water 
at 25 “C. In  Domard’s experiments aK is typically while the charge separation 
is 3.6 x 10-lO m, corresponding to Q* = 0.3. From figure 1 we see that saturation has 
not yet occurred. Saturation of the far field in spherical charge clouds was discussed 
in I. It was shown there that Booth’s theory for the primary electroviscous effect a t  
low potentials is in good agreement with full numerical calculations for thick charge 
clouds as long aa saturation has not occurred. Henceforth we shall linearize the 
Poisson-Boltzmann equation, confident that the results will apply to Domard’s 
experiments. 

The distorted charge cloud 
Suppose now that the fluid moves with velocity u = E .r relative to the centre of the 

rod, and that El is a typical value of IuI . Then the PBclet number 

P = El/wkTK 
12-2 
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measures the ratio of convection, which deforms the charge cloud away from equilib- 
rium, to Brownian diffusion, which tries to restore equilibrium. We shall assume that 
the PBclet number is small, implying that the charge cloud is deformed only slightly. 
The potential qi and charge density p in the cloud may therefore be expanded as 

where +1, p1 are O(P). 

which is obtained by solving 

# = qio+qi1+ ..., p =&+PI+  . . a ,  

In  I it was shown that the important non-equilibrium parameter is x = +p1 /K2e ,  

V2x = - U . Vp,/WkTK2e, 

i x+O a tm,  

n , V x  = 0 on the surface of the particle. 

Vx is proportional to the non-equilibrium thermal and electrical forces acting on the 
charge cloud. These forces modify the flow around the suspended particle and the 
extent of this modification is measured by the Hartmann number: 

where po is the viscosity of the suspending fluid. H is the ratio of the electric forces 
in the charge cloud to the viscous forces. 

When H = 0 the flow around the particle, held fixed in a straining flow E .x, is 
given by the Stokes equations and may be expressed in the form 

u( = q j k  E j k ,  (3) 

where F is a tensor which depends solely on the shape of the particle. In I it was 
shown that we may in general assume that the Hartmann number is small, and this 
we shall now do. We may therefore use the unperturbed velocity (3) when solving 
equation (2) for x. If the particle number density n is sufficiently small that particle 
interactions may be neglected, the increase in stress in the suspension due to the 
primary electroviscous effect is 

c 

where the integral is over 5, the region outside a single charged particle. 

Non-uniformly charged spherical particles 

We have assumed that the ion P6clet number and Hartmann number are small, and 
that the electric potentials are sufficiently low that the Poisson-Boltzmann equation 
may be linearized. These are precisely the assumptions made by Booth (1950) in his 
study of uniformly charged spheres. He showed that the viscosity p of a dilute sus- 
pension of spheres of radius a is 

where @ is the volume fraction of spheres, $0 is Einstein’s 
of aK with asymptotes 

f - 1 5 0 ( a ~ ) - *  (aKB 1)  - & ( a ~ ) - ~  ( a K  Q 1).  

( 5 )  

term, and f is a function 
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Note that the primary electroviscous effect is proportional to $$. Non-uniformities 
in the surface charge will therefore be important. A simple example is that of a sus- 
pension of charged spherical particles each with surface potential $o + $1 D . x. 
$l D . x represents a dipole surface charge distribution. If $l is not small compared 
with $o the particles will tend to form chains, but $1 and D are otherwise arbitrary. 
In the limit of a thin charge cloud (aK  9 1) the increase in stress in the suspension 
due to electric effects is 

Assuming Brownian motion is sufficiently strong for D to be randomly oriented, this 
becomes 

(30$:+ 99;) Es0/okT(aK)2. 

This is very nearly proportional to the mean-squared surface potential = $$ + *$?, 
while electrophoresis measures the mean potential 3 = $o. Since > ($)2 we 
conclude that, if we use the c-potential measured by electrophoresis, our predictions 
of the primary electroviscous effect will be too low unless the surface charge is uniform. 

2. A simple model 
We now study a simple model of a rod-shaped polymer molecule covered by a series 

of discrete charges. As the density of these charges increases we would expect the 
limit of a continuous distribution to be attained. Here we study the opposite limit: 
that in which the charges are so far apart that there are no interactions between their 
charge clouds. Note that electrical repulsion between the charges is now negligible. 
We must assume that the polymer’s rigidity is structural rather than the result of 
electrical forces. 

We model the polymer as a chain of charged beads linked by rigid rods. Such links 
are often considered to be hinged a t  the beads, but to model the rigid polymer molecule 
our links are required to lie in a line with direction n. This is known as the ‘shish- 
kebab model’ (Riseman & Kirkwood 1950). The links have no effect on the flow, 
which can see only the beads and their surrounding charge clouds. The radius a of 
each bead is small compared with K - ~ ,  the size of its charge cloud. The major sim- 
plification of the model is that the separation of the charged beads is large compared 
with K - ~ .  

The flow relative to the centre of the molecule is assumed linear: u = E . x + SZ . x, 
where E is the symmetric rate of strain and S2 the vorticity. However, the vorticity 
merely rotates the rods and, as explained by Russel (1978), this motion may be 
ignored. There are N beads evenly spaced along the rod of length 1. Each bead has 
charge Q and hence the total charge on the molecule is QT = NQ. For definiteness we 
choose N odd, so that the beads are positioned at the points sin, where s,, the distance 
of the i th bead from the centre of the rod, has the values 

~ i = i l / N  ( i =  ( - & ( N - l )  ,..., - l , O , l , . . . ,  + ( N - l ) ) ) .  

The case N = 5 is illustrated in figure 3.  The flow in the neighbourhood of the ith bead 
consists of a uniform flow U = E .sin superposed on the linear straining E . (x - 8, n). 
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FIGURE 2. Q& = coefficient of K,(aKr)/aKK,(aK) in a saturated equilibrium charge cloud, as a 
function of a K .  The asymptotes as a K  + co and aK = 0 are shown as broken lines. 

These two velocities contribute separately to the stress, and we deal first with the 
straining part of the flow. The contribution of this to the stress is well known. Each 
bead introduces an additional stress 20na3p, E/3 (Einstein 1911), whilst each charge 
cloud contributes EQ2/120nwkTe~ (Booth 1950; our equation ( 5 ) ) .  (Note that this 
result is more naturally expressed in terms of Q rather than $o. The exact size of the 
particle is not important in the limit of thick charge clouds a~ < 1.) Summation over 
the N beads gives an increase in the stress of 

Q2 )E. 
1207TukTe~ 

N (y- 7ra3,u,, + 

We now consider the uniform flow U past each bead. This induces a drag which 
consists of the Stokes drag 6nap,U together with the drag on the cloud, found by 
Booth (1954) to be ~Q~U/24nwkTs in the limit of a thick cloud. If the force on the 
ith bead is F,, then these forces contribute x.sinF, to the stress. If no Brownian 

motion is present the rod rotates with the transverse flow and 
i 

n = E.n-nn.E.n+n.n. 

In  steady state the probability distribution function p(n) satisfies the diffusion 
equation 

where D is the rotary diffusion coefficient. We shall assume that rotary Brownian 
motion is strong. The diffusion equation has solution 

V . (pn - DVp) = 0, 

1 n.E.n 
p(n) = -+- 4n 8770 
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The random orientation of the rods is only slightly perturbed, and the rotation 
caused by Brownian couples is equal and opposite to that caused by the straining 
flow E .x. The sum of the Brownian and hydrodynamic contributions to the stress 
becomes 

zsinF5 = ~ ; s , n F E . n s ,  = Pn.E.n(N-1)(N+1)12/12N, 

where 
F = 6na,u, + ~Q~/24nwkTc. 

Averaging over the random orientation gives the stress 

i i 

P(N - 1) ( N  -I- 1) 12E/36N. (7) 

The sum of (6) and (7) gives the total contribution to the stress, per particle. As 
a+ 0 the electrical terms dominate and the stress in the suspension becomes 

n&$ E { 1 
w k T ~ c  120nNf 864nN3 

( N -  1) ( N +  1) Pk2 
g E = -  - 

where n is the number density of rods in the suspension. We see at once that - ( 1 ~ ) ~  as l+co. The ends of the rod are brought into regions of ever increasing 
flow strength. The correspondingly large distortions of the charge cloud produce a 
large electroviscous effect. On the other hand, 

u ~ +  Q'nE as Z+O. 
12OnNwkT~c 

This is smaller than the corresponding result for a charged sphere by a factor N-1. 

The model has ignored interactions between the charge clouds which have now 
coalesced. Similarly, if we make our rod uniformly charged by letting N -f co, we find 
that laE( - N-l ,  which is clearly incorrect. The interactions between overlapping 
charge clouds have again been ignored. 

Finally, let us consider electrophoresis of our charged particle in an electric field E. 
If the charge on the ith bead is Qs,, the velocity of the particle is 

N 

i=1 
U = E & , / ~ T u ~ , N  

(since the charge clouds are thick compared with the size of the beads). Suppose 
Qi = ? &. U is proportional to the total charge on the particle and is zero at the 
isoelectric point. However, the electroviscous effect is unchanged and proportional 
to Q2. 

3. Very long rods 
In  the previous section we assumed no interaction between the charge clouds, but 

this is unrealistic in typical experimental conditions. We now perform an analysis 
valid for very long, uniformly charged, rods. Each rod is taken to be a cylinder of 
length 1,  radius a, with 1 9 a,  and we take the Debye length K - ~  < 1 so that end effects 
may be neglected. This implies that the unperturbed charge cloud is independent of 
position along the rod, and so velocities along the rod produce no distortion of the 
cloud (except at  the ends, which we ignore). It also implies that, close to  the surface, 
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FIWF~E 3. The shish-kebab model when N = 6. 

derivatives of u and x along the rod are negligible compared with those perpendicular 
to its axis. The problem is two-dimensional, and the equilibrium potential in the cloud 
is given by (1). We assume that the flow is weak compared with Brownian rotation of 
the particle: i.e. y / D  < 1, where y = rate of shear, D = kT/R,, and R,is the resistance 
coefficient for rotation. i,e. 

Rotation by the symmetric extensional flow E will be balanced by Brownian couples, 
which orientate the rods randomly. As in $2, we may take the rods to be stationary 
with respect to E and may neglect the effects of vorticity. Strong Brownian motion 
of the particles implies that Brownian diffusion of the very much smaller ions is 
strong, i.e. that the ion-P8clet number yl/wkTK < 1, which is clear from (8) when we 
note that w is typically 4 x 10l1 m/N a. 

We now choose Cartesian axes (xl, x4, x3) such that x1 is measured along the rod. We 
may orientate the 2 , 3  axes so that on x2 = x3 = 0 the unperturbed flow perpendicular 
to the rod would be E2,xl. To solve our governing equation (2) for 2, the distortion of 
the charge cloud, we must know u . Vpo,  and since K - ~  < I we are interested in u only 
close to the rod. We therefore use the inner expansion of a pair of matched asymptotic 
expansions, as given by Cox (1970). In  cylindrical co-ordinates the inner expansion is 

u, = c cos 8 (1 - a2/r2 - 2 In r/a)/ln (a l l )  + 0 (In 

uo = c sin 8 (1  - a2/r2 + 2 In r/a)/ln (all)  + 0 (In a/Z)-2, 

u1 = d In (r/u)/ln (a/Z) + 0 (In a/l)-2, 

where the constants c, d are to be found by matching with the outer velocity u = E . x, 
giving 

where we have symmetrized c and d, since this is the form required for evaluation of 
the tensor F. 

Neglecting the non-uniformity of the equilibrium charge cloud a t  the ends, only 
the radial component of velocity contributes to u.Vpo and the equation for x 
becomes 

c = &,x, = a(&, + J q 2 )  x,, d = - E11x1, 

Setting z = r/a,  this has solution x = Ax1 cos 8, where 

A = -c@,a2~/ln (al l )  wkTK,(a~),  

and 
X ( z )  = (1  - 2-2 - 2 In z) K;(a~z ) .  
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We now evaluate the increase in stress (4). Again neglecting end effects the (2, 1) and 
(1, 2) components of Fki,ap,/8xk are 

- (1 - aP/ra - 2 In ./a) x1 cos O$,CK~K&(K~)/~ (In u/Z)R,(UK) 

and all other componenta are smaller by a factor (In u/Z)-l, Integrating over all space 
outside the rod, the increase in stress due to the charge cloud around one rod is 

is$g €(UK)%F(UK) 

96wkT ( l n ~ / Z ) ~ K t  (uK)' 
- {( E . n - nn . E . n) n + n( E . n - nn. E . n)} 

where 

P ( U K )  = -lla Kl(UK2) Z (  1 - 2-'- 2 h 2) xl(2) (UK)-'dZ, 

which may be put in the form 
OD 

The t-mymptotic expansions are 

P(uK) ( u K ) - ~ { - ~ ( ~ u K ) ~ -  2*2464h~~-3*1726}+ ... as ~ K + O  - - 8ne-ea"i(aK)-8 + 81.5ne-2m(a~)-9 + . . . &B UK+OO, 

with 95 % accuracy at 0.01 and 50 respectively. Typical values of F ( ~ K ) ,  for the range 
of a~ used in the experiments discussed in $5.5, are 

a K  P(a4  P(aK) (aK)6/K:(aK) 

10.87 x - 0.4287 x 10' 1.183 
3.87 x lo-* - 0 . 1 7 7 0 ~  10' 1.364 

We now use our assumption that Brownian motion is strong, and average over the 
uniformly distributed orientations of n. The increase in viscosity due to electrical 
effects, pNs ,  in a suspension of volume fraction @ is 

. . - (D(l/U)2$i€(UK)SF(UK) 
pNs = 480wkT(lna/Z)2K~(a~) ' 

The total charge on each rod is 

(9) 

QT = %TUKZ$, f 2 K l ( U K ) / K o ( U K ) .  

In terms of QT, we obtain 

pNS N @ , & ~ ( ~ o g u ~ ) ~ / 9 6 0 n ~ u ~ w ~ ~ € ( ~ n  all)' as aK+ 0. (10) 

We shall discuss in $6.4 the lack of agreement between this prediction and the experi- 
mental results of Domard. In the next section we discuss a full numerical solution of 
the governing equations. We shall find that (9) and (10) are valid only when Z > ~OK-'. 
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If the rod is uniformly charged but free-draining (in the sense that it has no effect 
on the imposed flow except via its charge cloud - cf. the discrete charge model of $2)  
then similar calculations give the increase in the viscosity of the suspension: 

,up; = @$~c-z(ZK)~{K~(UK) + Kf(a~)} /240wkTKf(a~)  

- p&(log a/Z)2/(logaK)2 as a~ -+ 0. (11) 

The unperturbed flow has not been slowed down by the presence of the rod, and the 
large distortion of the charge cloud gives rise to a large electroviscous effect. This 
result will be used as a check on the numerical scheme discussed below. 

4. A full numerical scheme 
The results of $ 3  are not suitable for comparison with Domard’s experiments for 

two reasons. Electroviscous effects are largest and most easily measured when the 
charge cloud is thick. We therefore wish to remove the constraint Q Z by improving 
the representation of the charge cloud to include end effects. Secondly, Cox’s (1970) 
inner expansion of the velocity field is correct only to O(logZ/a)-l. Even when 
Z/a = 45, log(Z/a) is only 3.8, so we wish also to improve the representation of the 
velocity field. We now set up a full numerical scheme which incorporates both these 
improvements . 

The fluid velocity may be expressed as a distribution of Stokeslets over the surface 
of the particle. When the body is slender, as in this case, we may approximate this 
distribution by one of Stokeslets and multipoles along the centre-line. Here we follow 
Lighthill (1976) and consider Stokeslets and source dipoles, since the strength of the 
latter is determined by the local Stokeslet strength. We seek to satisfy as nearly as 
possible the no-slip condition on the surface of the particle. Lighthill discusses how 
the rod may be divided into M discrete elements over each of which the Stokeslet 
strength is constant. Accuracies O(a/Z) can be attained. This may be used as the 
basis of a numerical method which is described by Russel et aZ. (1977) and by Higdon 
(1979). We omit the details, and merely observe that the flow due to the Stokeslets, 
together with the imposed flow E . x, may be expressed in the form 

u = B1{Ell(C +xl) + &(E12 + E2J ( A  + r )  cos O}  + F{Ell(D - t r )  

+ WI2 + E2J (B  + q) cos 8 + 
+ QU8, 

- E33) r cos 28 + &E23 + E32) r sin 28) (12) 1 
where B1, F, 6 are unit vectors, with B1 along the rod, and A ,  B,  C, D are functions of 
position which represent the flow due to the Stokeslets. 

We assume that the charge along the rod consists of a series of discrete charges Q 
at points ri (i = 1, . .., N ) .  The charge cloud is given by superposition: 

N 

Z = 1  
p,(r) = - X Q~~exp[-~lr-r,I/4nlr-r,1] 

and, as in $ 2, we shall distribute the charges uniformly along the rod, at  points 

rc = ( r ,  zi) = (0, iZ/N); i = - a(N - I ) ,  . . . , - 1, 0,1, . . , , i ( N  + I ) .  
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FIQTJRE 4. The boundary conditions for (a) xo, (b)  xl, (c) xn, together with the 
corresponding distortions of the charge cloud. 

As discussed above, this discrete representation of charge is realistic, and in the limit 
N -+ 00 we recover a uniformly charged rod. 

We must now obtain x by solving equation (2). V p ,  is independent of 8, so we may 
make a Fourier decomposition of x similar to that of u: 

In the far field xo is a quadrupole of the form ~ ( C O S  q5) r;3 where $ is measured from 
the xl-axis, and r," = r2 + xf. Thus xo cc (2x4 - r2) r;5 at infinity. The boundary con- 
ditions are illustrated in figure 4, together with the corresponding distortion of the 
charge cloud. 

x1 is analogous to the x1 of $3. The far field is a quadrupole of the form cos 8 Pi(cos q5) r;s 
which implies x1 oc rx1!r;6 at infinity. Similarly 
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The far field is of the form sin 28Pg(cos 6) r;3 so x2 cc r2/,-6 at infinity. 

that the relevant components of F are 
The increase in the stress is given by our standard integral (4). From (12) we see 

= D - &r, E)r2, = &32 = &rain 28, 

4 .12  = q,, = *(B+x,) cos8, Fxll = C+Xl, 

Fr22 = - Fr33 = *r  cos 28, FZl2 = Fx21 = i ( A  + r )  cos 8. 

Integration with respect to 8 eliminates many of the terms of (4), of which the non- 
zero components are 

- ( D -  * r )  +* (C +xJ] XoE,,dV/ukTK2e = GIEll, say, (1, 1) component = - 1, [E 8x1 

(I, 2) = ( 2 , i )  = - ~ ~ , [ ~ ~ ~ + x l ~ + - ~ ~ + r ~ ] ~ l c o s ~ ~ ~ ~ 1 2 + ~ ~ l ) d ~ / ~ w ~ ~ ~ z ~  aP 
ax1 

= 4G,(E12 + E21L 

(2, 2) = - (3, 3) = -1 * r COs2 2@"(Ez2 - Es3) d V / 4 W k T K 2 €  = iGa(E22- E,,), 
Vf ar 

(2, 3, = (3, 2, = 4 G 3 ( E 2 3 + E 3 2 ) *  

Adding an isotropic stress *G,(E,,+ E,,) I, the electrical contribution t o  the stress 
may be written as 

uelec = G,E + (G2- G,) (E .nn+nE .n) + (Gl- 2G2+ 4G,) nnn. E .n. 

Averaging over all orientations n with equal probability, since Brownian motion is 
strong, we obtain 

aelec = (?%GI+ V 2  + iG3)  E. 

5. Numerical methods and results 
The velocity field 

The first step of the calculation is to find the Stokeslet strengths. Our goal is to explain 
the intrinsic viscosity of a suspension of charged rods. Domard measured an intrinsic 
viscosity [v], which he defined as 

P-Po v [v] = lim - - 
o+o Po@ mT' 

where V ,  mT are the volume and mass of one particle. We shall assume that the 
density m,/V is not far from that of water. The electroviscous contribution will be 
evaluated later, but first we must find the intrinsic viscosity due to uncharged rods. 
We require the couple L, on a rod rotating about an axis perpendicular to itself, and 
the stresslet Sll when the rod is placed in a pure axially symmetric straining motion. 

The general behaviour of the numerical results has been discussed by Russel et al. 
(1977). Convergence of the iterative scheme is rapid as long as the centres of all 
elements are further than a radius from the ends of the rod. This puts an upper bound 
on the number of elements M into which the rod may be divided. For sufficiently 
large M the results are independent of M, but for short rods this limit cannot be 
attained. It is therefore necessary to extrapolate the results out to M = 00. The com- 
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FIQURE 5. Results for the friction coefficients for a rod of length Z and radius a. (a) L, for rotation 
about an ads  perpendicular to the centre-line, (b )  E; for translation along the axis, (c) intrinsic 
viscosity, and ( d )  F, for translation perpendicular to the axis, all scaled by first-order slender 
body theory. N indicates numerical results; A ,  Batchelor’s (1970) 3rd-order asymptotic theory; 
and X ,  Youngren & Acrivos’ (1976) numerical results. 6 = l/log (Z/a). 

putations performed here suggest that the numerical error as M+co varies more 
closely with M-1 than with the M-llog M found by Russel et al. These authors give 
results for aspect ratios 1/2a 2 20 in their figure 3, after extrapolation to M = 00 and 
normalization by the asymptotic predictions of first-order slender-body theory. For 
comparison they also plot Batchelor’s (1970) third-order approximation, and the 
exact numerical calculations of Youngren & Acrivos (1975). We are interested in 
aspect ratios as low as 9, so we present our own calculations in the same manner in 
figure 5. Note that Russel et al. plot Youngren & Acrivos’ results for L, incorrectly 
and that the discrepancy between the two sets of numerical results appears in- 
correctly to grow at large aspect ratios. From our figure 5 we see that the discrepancy 
is only 4 yo a t  an aspect ratio 25, and agreement is excellent at higher aspect ratios. 
We plot the intrinsic viscosity rather than Sll, since Youngren & Acrivos did not 
compute any values for fill. For completeness we also show the friction coefficients 
Fl and Fs for translation of a rod along and perpendicular to its axis. The assumption 
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1.111 [TI [ql 
Aspect ratio experimental 3rd-order 1~meriC81 wa (charged rods) approximation results 

9 26 9-4 12 
12.15 46 14-4 17 
17.1 72 24.1 29 
22.5 130 37-2 43 

TABLE 1. Values of the intrinsic viscosity of a suspension of rods 

180 800 or less 1286.6 

that as M+m the error term varies as M-l (rather than M-llog M) improves the 
agreement between the slender-body results for Fl and Youngren & Acrivos’ results, 
whilst for F, it  removes the peculiar turning point found by Russel et al. 

In  table 1 we compare these numerical results for [y] with Batchelor’s third-order 
theory and with Domard’s experimental measurements. We see from the experiments 
that electrical effects have approximately doubled the intrinsic viscosity of the sus- 
pension. Having obtained the Stokeslet distribution, the number of elements M did 
not greatly affect the further calculations of the electroviscous effect. M was there- 
fore taken to be 31, or, in the case of short rods, the largest value which still gave 
convergence. 

The electroviscous effect 
We are now in a position to find x by solving the three problems depicted in figure 4. 
We simplify the problem by assuming that a < K - ~  (as was the case in Domard’s 
experiments). With errors O(UK) ,  we may apply the boundary conditions 

axo/ar = 0 ( X l  = x, = 0) 

on the axis of the rod, rather than the appropriate condition at  its surface. By 
evaluating the quadrupole moment of x we obtain boundary values for x far from 
the rod, where higher multipoles may be neglected. The final solution was found not 
to depend very strongly on the position of the outer boundary, which was usually 
taken to be along the lines 

Thus for a point charge the integration extended to 10 Debye lengths, whilst for a 
long rod the O(rLb) term which was neglected a t  the outer boundary was about 6 % 
of the O ( Q )  quadrupole term. 

Because the rod has been approximated by a line, the ratio K - ~ / u  must always be 
large but is no longer physically important. On the other hand, the ratio ~ - 1 / l  is 
quite crucial. Setting a = 1, K-1 was chosen to be 10 and the entire range of values for 1 
was investigated. Each of the problems depicted in figure 4 was then solved using 
successive over-relaxation over a rectangular grid. A uniform grid mesh was ideal for 
studying the experimental results, and was used throughout, though a variable 
mesh-size might have improved efficiency for extremely large values of 1. Variation 
of the position of the boundaries and of the grid size produced answers which varied 
by some 16 yo, and this is therefore the suggested accuracy of the results presented 
here. All results are non-dimensionalized by the electroviscous effect which would be 

r = x1 = 21+ 1 o K - 1 .  
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FIGURE 6. Non-dimensional intrinsic viscosity p*. FD, free-draining rods; NS, rods with no-slip 
boundary condition, 88 a function of the number of charges N .  The broken line shows the 
asymptotic result (14). I = 200, r1 = 10. 

present if the charges were concentrated at  a point instead of spaced along a line. 
From (5) we see that this value is 

Q$ n/240nwkT~e,  

where n is the number density of particles in the suspension. 

Free-draining rods 
The program wa& first tested by evaluating the electroviscous effect in a suspension 
of point charges. This has magnitude 1 under the present normalization. The scheme 
for finding the Stokeslet strengths naturally did not converge, as it was designed for 
slender rods, but since a point charge does not affect the flow in the bulk of the charge 
cloud (Lever 1979) the Stokeslet strengths were simply set to zero. The computed 
result was accurate to within 4 yo. 

After normalization the viscosity of a suspension of free-draining rods, discussed in 
5 2,  becomes 

(14 )  

This result is exact as long as the point charges are sufficiently separated for their 
charge clouds not to interact. We may study these interactions by setting the 
Stokeslet strengths to zero in this full numerical scheme, so that the rod becomes 
free-draining. Figure 6 shows the numerical results obtained for a free-draining rod of 
length 1 = 200 as the number of charges N is increased. The analytic prediction ( 1 4 )  
is shown as a broken line. Agreement is good when N < 10, i.e. when the distance 
between charges is greater than 2 r 1 .  When N becomes large the theory for a long, 
uniformly charged free-draining rod becomes valid (see ( 1 1 ) )  predicting ,usD = 5. 
The numerical result is 4-5 and the difference reflects the presence of end-effects. 

= A’-’+ 5 ( N  - 1 )  ( N +  1) Z2~2/36N8.  
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FIQUBE 7.  Non-dimensional intrinsic viscosity p*. NS, rods with no-slip boundary condition; 
FD, free-draining rods, aa a function of the half-length tZ. The broken line shows the asymptotic 
result (14). Number of charges N = 3. 
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In  figure 7 we fix the number of charges a t  3 and vary the rod length 1. The per- 
centage difference between the numerical results and the prediction (14) is 11 yo at 
1 = 100, again indicating the accuracy of the numerical scheme. In  figure 8 the density 
of charges is sufficiently high that the rod may be regarded as uniformly charged. 
Agreement with the analytic prediction (1 1) is good when 1 > 3 ~ - l .  The computed 
values tend to 1 as the rod shrinks to a point, whilst the analytic prediction, propor- 
tional to I, becomes too small, as discussed in 0 2 .  At large 1 the computed results are 
slightly smaller than the asymptotic predictions. This reflects the smearing-out of 
the charge cloud near the ends, which was neglected in the asymptotic analysis. The 
agreement of these results with the previous analysis of free-draining rods is a useful 
check on the accuracy of the program, as is the agreement of the friction coefficients 
with those of Russel et al. To explain the experiments, however, we must now study 
rods with no-slip boundary conditions on their surfaces. 

Rods with no-slip boundary conditions 

After normalization, the asymptotic result (10) obtained in 8 3 for a long rod is 

& = l ~ ( l o g a ~ ) ~ / 4 ( l o g a / l ) ~  (I B K-1 a a). (15) 

The presence of the rod, rather than a string of free-draining beads, substantially 
reduces the flow, and thereby reduces the perturbation and the electroviscous effect. 
This can be seen in figure 6 ;  the curves for the two types of particle are otherwise very 
similar. In  figure 7 we again study the case of three charges placed on rods of various 
lengths. Again there is an increase in the electroviscous effect as 1 becomes large. This 
time, however, there is first a decrease, for as the rod grows longer the flow in the 
neighbourhood of the central charge is reduced, and this charge eventually gives a 
negligible contribution to the electroviscous effect. In  figure 9 we study uniformly 
charged rods. The number of charges N is chosen so that the charge spacing is 4, 
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which is small compared with the cloud size K - ~  = 10. However, from figure 6 we see 
that a spacing of 10 is quite satisfactory, and this had to be used for the longest rods 
to keep the computation time short. The analytic prediction (15) is marked by a 
broken line. We see that the asymptotic result is not valid until 1 > 2 0 ~ ~ ’ .  We again 
ascribe the difference when 1 is very large to the simplifying assumptions made in $ 3. 
The agreement is poorer than in figure 8 (free-draining rods), and occurs only at much 
larger values of 1. This suggests that the major error of $ 3  was in the velocity field 
rather than in the assumption of a uniform charge cloud. 

Domard’s experiments 

Domard ( 1  976) performed a series of experiments on suspensions of the peptide 
poly-a-L-glutamic acid. When ionized the helical structure breaks down, and he 
concluded that the molecules could then be modelled as rigid cylinders of radius 
a = 4 x 10-lo m and length 1 = 3.6 x 10-lo II m, where II is the degree of polymeriza- 
tion. He could control the degree of polymerization, and measured the intrinsic 
viscosity of suspensions for which Il lay between 20 and 560. 

derived from titrations. 
How far this differs from the <-potential is not clear for this molecule, but Katchalsky, 
Shavit & Eisenberg (1954) studied polymethacrylic acid and found that $o derived 
from titration was some 15% higher than the g-potential measured by electro- 
phoresis. However, we have already shown that results for thick charge clouds are 
expressed more naturally in terms of the total charge. The experimental results 
presented here were performed on completely ionized molecules, each of whose 
monomers carried a single electronic charge e. 

In  table 1 we see from the low intrinsic viscosity that the longest polymers were in 
fact coiled: the electrical repulsions between monomers were insufficient to maintain 
the rod-like shape. Domard also concluded this from his neutron scattering experi- 
ments. We are therefore left with results on the four shortest rods. These were per- 
formed at ionic strengths between 9.8 x 10-4 and 7.6 x lo-* moles per litre, so that the 
Debye length K - ~  was typically 30a, whilst 1/2a was at most 22.5. The charge cloud 
was therefore far from uniform. We have already concluded that linearization of the 
Poisson-Boltzmann equation will not introduce significant errors. Even if we take ll 
to be 400 we find from (8) that the ratio y / D  is at most 0.2, so rotary Brownian motion 
is strong and the ion-Pdclet number is small. For the longest rods we obtain a Hart- 
mann number H = 5 and from our earlier work (I) we conclude that small Hartmann 
number theory is valid. 

From the definition of Domard’s intrinsic viscosity (13) we find that the predicted 
dimensional electroviscous contribution to the intrinsic viscosity is 

Domard expressed his results in terms of a potential 

,!& e211/240ne~wkTpom, (16) 

where m, the mass of one monomer, approximately equals 129x 1 . 6 6 ~  kg, a 
value derived from the molecular weight. pss is approximately one for these short 
rods (and, incidentally, we see from figure 9 that the asymptotic results of $ 3  will 
give predictions which are too small by a factor of about seven). Setting pRs = 1, 
(16) is proportional to II and the corresponding straight line is plotted in figure 10. 
K varied slightly between the experiments, but by so little that the variation from the 
straight line is not noticeable. The numerical model was used to study rods with the 
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FIGURE 10. Predictions compared with the experimental results. X, experimental results; 
- , predictions for point charges (p* = 1); 0, the numerical predictions for rod-shaped 
particles. 

Electroviscous contribution to [q]  
A rn1 I \ 

L I -  

Experimental 
7- 

n Experimental Numerical Experimental Theoretical Theoretical 

20 26 12 14 24.2 0.58 
27 46 17 29 35.3 0.82 
38 72 29 43 51-4 0.84 
50 130 43 87 70.2 1.2 

TABLE 2. Values of the electroviscous contribution to the intrinsic viscosity 

same size and charge density as in the experiments, and p& varied between 0.94 and 
0.95. The individual predicted values are shown as isolated points. 

The experiments determined only the intrinsic viscosity of a suspension of charged 
rods. To obtain the electroviscous effect we must subtract the intrinsic viscosity of a 
suspension of similar, but uncharged, rods. Salt could not be added to compress the 
double layer and suppress electroviscous effects since that would also have altered 
the configuration of the molecule. The best we can do is to subtract the theoretical 
predictions presented in table 1 (assuming m,/V = 1 g The resulting experi- 
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mental results for the electroviscous effect are tabulated in table 2 and plotted on 
figure 10. 

The agreement between theory and experiment is as good as that obtained by 
Chan & Goring (1966) or by Stone-Masui & Watillon (1968). Here we have the experi- 
mental advantage that the electroviscous effect is larger than the intrinsic viscosity of 
the uncharged molecules. If each monomer is indeed a short cylinder of radius 
4 x 10-10 m, length 3.6 x 10-lO m and mass m, then the obvious computation of 
V/m, gives a value 0.845 om3 g-l. This reduces the intrinsic viscosity of a suspn- 
sion of uncharged rods, increases the experimental electroviscous effect, and the ratio 
of experiment to theory lies between 0.66 and 1.3 (cf. the final column of table 2). 
Since the agreement is fairly good, small errors such as these can make substantial 
changes to the percentage error, and there is little point in trying to refine our calcula- 
tions further. It remains to add that an attempt to obtain the intrinsic viscosity of the 
long coiled molecules by assuming pgs = 1 was unsuccessful. A combination of both 
primary and tertiary electroviscous effects is present in this case. 

The bulk of this work was done while the author was a research student in the 
Department of Applied Mathematics and Theoretical Physics, University of Cam- 
bridge. The author is grateful to Professor M. Rinaudo of Grenoble for providing a 
copy of Domard’s thesis and for helpful correspondence, and to his supervisor, 
Dr E. J. Hinch of Cambridge, for help and encouragement throughout the course 
of this work, which was supported financially by the Science Research Council. 
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